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Modeling Lossy AniSotropic Dielectric
Waveguides with the Method of Lines

Pierre Berini, Member, IEEE, and Ke Wu, Senior Member, IEEE

Abstract— This paper presents a new formulation useful for
modeling waveguides constructed from lossy inhomogeneous
anisotropic media. Our approach is based on a pair of
Sturm-Liouville type wave equations that have been derived to
handle inhomogeneous, diagonalized complex permittivity and
permeability tensors. The method of lines is then applied to these
wave equations, and related field equations, creating an indirect
eigenvalue problem that correctly models this class of structure.
Some refinements to the method of lines are also proposed,
particularly, regarding the construction of the modal matrices
found in the eigenvalue problem. Using our approach, modal
dispersion curves have been computed for millimeter-wave and
optical structures. Comparisons made with results available
from the literature validate our approach.

1. INTRODUCTION

IELECTRIC waveguides are used almost exclusively for

the transmission of electromagnetic energy at optical
frequencies. They are also well suited to waveguiding at
millimeter-wave frequencies since compact low loss structures
can be constructed. Dielectric guides, however, must be accu-
rately modeled if a circuit design is to be functional in the
end. This is particularly true in integrated optics where the
guides are often constructed on complex multilayer structures
and where a precise knowledge of propagation constants is
desirable. Rigorous and efficient numerical techniques are
therefore called upon to provide millimeter-wave and optical
circuit designers with appropriate mathematical or physical
models of such structures.

The most useful numerical techniques will function with
limited computing resources while providing accurate solu-
tions to a wide range of waveguiding problems. Additionally, a
method should be general enough to model important material
properties such as losses, inhomogeneity, and anisotropy.
Some vectorial methods, such as the finite element [1]-[3]
and finite difference [4] methods have been used to analyze
lossy inhomogeneous anisotropic waveguides. We have chosen
to work with the method of lines (MoL) since it is also a
rigorous vectorial technique. Furthermore, it is well known
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for its numerical performance; that is, its accuracy, speed of
computation, and minimal memory requirements.

The application of the MoL to the resolution of wave equa-
tions that generate the mode spectrum of isotropic dielectric
waveguides is well documented. Work described by Diestel
[5], [6], Pregla et al. [7]-[9] are most notable here. Losses
are easily introduced into this formulation as shown in [10]
and [11] where metal strips having a finite thickness are
modeled as lossy inhomogeneous dielectrics. Some efforts
to include material anisotropy have been reported where
homogeneous anisotropic substrates were used to support
strip-line waveguides [12], [13]. Some work has also been
done regarding homogeneous gyroelectric and gyromagnetic
materials [7], [14].

In this paper, we are concerned with the application of
the MoL approach to solve the wave and field equations
that govern guiding in structures constructed from lossless or
lossy materials that are both inhomogeneous and anisotropic.
To our knowledge, present formulations applying the MoL
cannot handle this situation which is of practical importance,
especially in integrated optics. The wave and field equations to
be solved are derived in Section II followed by a description
of the indirect eigenvalue problem obtained by applying the
MoL. Numerical results and a discussion are given in Section
1II.

II. FORMULATION

In this section, the wave and field equations that must be
solved are derived directly from Maxwell’s equations. The
method of lines is then applied to these equations such that an
appropriate indirect eigenvalue problem is created. Alternative
formulations for the modal matrices are proposed.

A. Wave and Field Equations

Maxwell’s equations are written in the frequency domain
for source-free anisotropic inhomogeneous media

VxH=ywe E )
VxE=—wi-H )
V-(e- E)=0 3)
V-(u-H)=0 “)

where € and 7 are diagonal second rank tensors sharing
common principal axes. We expand these tensors in a cartesian
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coordinate system and write in matrix notation

Eyy ®)

and

l’llﬁl'I
Hyy . 6)
Hozz

7=

For inhomogeneous waveguides constructed from linear mate-
rials, the components of the above tensors depend on z and y
only ¢,;(z,y), i1, (z,y); the direction of wave propagation is
taken along the -z axis. Both dielectric and ohmic losses are
included since p,, and €,, are taken to be complex quantities
defined as pi,, = p), — pt), and €, = €,, — )(€!" +0,, /w) where
0, are components of the conductivity tensor.

Maxwell’s curl equations (1) and (2) are coupled first order
differential equations. They become uncoupled by applying the
following sequence of mathematical operations V x z—1 - (2)
into (1) and V x 7' (1) into (2). Second order vectorial wave
equations, which are rigorously equivalent to Maxwell’s curl
equations, are then obtained for I and H

Vxu !} VXE-we E=0 (7
Vxe! Vx H-wp-H=0. (8)

We may immediately remove the y dependence in € and &
since in the MOL, the inhomogeneous part of the structure
along y is divided into a number of homogeneous layers
and boundary conditions are applied between them. The two
vectorial wave equations (7) and (8) are then expanded into
six scalar wave equations. In inhomogeneous anisotropic me-
dia, each scalar wave equation couples with at least an
other making their solution difficult. However, if we consider
TE® (EF® = 0) and TM® (HIM = 0) modes only
and make use of (3) and (4) accordingly. we obtain some
uncoupled scalar wave equations for both these families of
modes. The superposition of the TE® and TM® modes will
then completely characterize any mode propagating in the
structure, including hybrid ones.

The TE”® modes are obtained by solving the following wave
equation for the £, field component:

JGLZ_O_[ ! 8ETE] +ﬁE3E
€yy OF

Oy?
-+ (iﬁ’)’z + wzﬂxrezz) EEE =0 (9)
Cyy

fe Hozz oxr Y

and similarly, the TM" modes are obtained by solving the
following wave equation for the H, field component:

€T

Boz O [ 1 0 oy &
L= - Ty Z_H
Uy O [622 ox Y + oy2 Y

-+ (&7—:72 + Wz.uzzexa:) HEM =0
Hyy

(10)

where we have defined the complex propagation constant
~ such that /82 = —v and v = a + j5. The above
wave equations are Sturm-Liouville type differential equations
written in self-adjoint form. They simplify to Helmhotlz
equations when we no longer have an = dependence in € and f.

The x and z oriented electric and magnetic field components
of the modes propagating in the structure are related to the
TE* and TM* modes via the following equations:

“1[9 (1 & ) o
E””:M[%(;g;ﬁ’y )+w tyy H, (11)
ley O 1 8
E,=-%¥ __FETE Y ™ 12
Y €2z oy Y JWE,, O Y (12)
—1 9 1 0 e 2 TE
H, = o [EE— (uzz %Ey > + weyy oy (13)
L= S pTE L ZPyy Y gT™ 14
T gwpy, Oz Y N, Oy Y (14)

The Sturm-Liouville wave equations (9) and (10), along
with the above field equations (11)—(14), are solved for the
propagation constant y using appropriate boundary conditions
applied at the horizontal and vertical limits.

B. Application of the Method of Lines

A thorough description of the MoL technique along with
some results are given in [7] and references therein. However,
since we are solving a different set of differential equations,
we include for clarity of presentation and completeness, some
intermediate steps and give details in the Appendix.

In the MoL. the differential equations to be solved are
discretized along one dimension only for a two-dimensional
(2-D) problem. The equations are then solved analytically in
the remaining dimension while applying boundary conditions
between consecutive layers. A large number of lines can thus
be used to discretise one dimension while an arbitrary large
number of layers can be used to describe the inhomogeneous
character of the structure along the other dimension. The
required computing resources are modest and the numerical
accuracy of the approach we are using is of order A%; h being
the discretization interval. Furthermore, for a lossless structure,
[ exhibits a monotonic variation with £ thus making possible
numerical extrapolation to higher precision values.

Fig. 1 illustrates an arbitrary waveguide structure com-
posed of a sequence of layers that are homogeneous or
inhomogeneous along x. Also shown are the shifted £ and
H line systems where. respectively, the EJF and H ™
field components are solved. The nonequidistant discretization
scheme is shown for the case of electric wall lateral boundary
conditions.

We approximate the differential operators along « using
nonequidistant finite difference techniques as detailed in [15]
and [7]. The required discretized differential operators are
listed below in matrix form where the top notation refers
to electric-electric or electric-magnetic lateral wall combina-
tions (ew-ew, ew-mw) and the bottom notation refers to the
magnetic-magnetic or magnetic-electric lateral wall (mw-mw,
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Fig. 1. Waveguide structure discretized by two shifted line systems £ and H for electric wall lateral boundary conditions.
mw-ew) combinations matrix relations:
1 TE _ n, TE
9 =D, lthre E, rek,
E—EZ’TE = ? hl E;’TE (15) 0 .TE 0 nTE
r ~=Dt = —Zr,D'r, %Ey = hb‘EEu
_ZDt — —?T Dt'f' 6 ETE — 82 m, TE 21
L O S Y g ="y @D
i = ——
A Dw {LreDrh and
2 ~-=DiD,
a_ n,TE __ _lp _ h2 En,TE (a7 HTM — /th’;L,TIVI
ox2 Y h2" € 1 DDt Y
- ﬁ a4 ﬂ HTM _2 Hﬂ,TM
9 1 D Dt or v 6
n,TM __ h2 n,TM 82 8
ox2 ¥ h2 1 v 3 =Thg 5 (22)
~33 DD, oz Oz
where the normalization matrices 7. and rp, are written
% 0 rn h h
(uzz 52 v ’TE> re= |4/ = =[5 (23)
1 “ diag * diag
1 "_QD;[UZZ];IDw TE
= —~—Psl, = h EY (19) and h is taken as the minimal discretization distance.
h? 1 ~1pt
“ﬁDw [t22)p DY Our wave equations, (9) and (10), are discretized within
d( 10  _om each layer of our composite structure by introducing the
9z (ezz 8—H v ) second-order finite difference operators defined above
1
__Dw z _lD :
__ 1 Psl h2 1 Py 4 "™ (20) ( s — [tzzleleszle[eyy)s t Psle
B2 h 1, 1 y
T2 Dile:.)c " Da

Matrix D is as given in [7]; although the same notation is
used, it must be noted that the first-order finite difference
operator D, is different for all combinations of lateral walls.
We have included the second order operators P, as they
are useful for treating homogeneous layers, usually present
in composite structures. The normalized fields EZ’TE and
H ;’TM are defined such that the second-order finite difference
operators P, 5, and Psl. j are real symmetric matrices when a
nonequidistant discretization scheme is used. The normalized
quantities relate to the discretized fields via the following

+ wz[l‘zw]e[fzz]e + ’72 [622]6' [eyy]e—l)E;L’TE

* ?)2 Byt =0 24)
( 77 [€aln [i==]n 1ty 17 Pl

+ w?pzz]nleanln + ¥V [pezln[byy]h ) ™

+ azH" ™ _ o, 25)

oz
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The diagonal matrices [ezz]|n, [fbyy]n and [p..]n are created
from the functions €, (), pyy(x) and p,.(x) sampled on the
H lines while [pes)e, [€yyle and [es.]. are formed from the
functions p,.(2). eyy(x) and €,,(z) sampled on the E lines.

Discontinuities in permittivity are rigorously accounted for

if they are placed on an F line, where the tangential electric
fields E, . are continuous. The values of €,, and €., on this
line are found to be

_ eyyadi +eyyods

= 2
Cyy di +do (26)
€2z 1d1 + €2, 2d2
py = — o 27
€z 4 T d, (27)

Similarly we place discontinuities in permeability on an H
line, where the tangential magnetic fields H, , are continuous.
The values of 1y, and .. on this line are

_ Hyy,303 + pyy,ads

28

Hyy ds + dg4 (28)
Pzz,303 + phzz4ds

vy = J : 29

K ds + dq4 @9

where the distances d,, defined in Fig. 1, are required if the
discretization is nonequidistant in the region of the discontinu-
ities. The permittivities and permeabilities having subscripts
1 refer to the value of these quantities on either side of a
discontinuity.

We now introduce the following transformations

n,TE _ TE
E,; " =U.9,

Hyp™ =U,o]™ - (30)

where U, and U}, are nonsingular matrices. These transforma-
tions are substituted into our discretized wave equations which
are then multiplied by U, and U, h !, respectively, as shown
in (31) and (32) at the bottom of the page. The matrices U, and
Uy, are selected such that the wave equations are diagonalized.
This is achieved by eigenvalue decomposition where the
matrices U, 5 and [v2 ;]aiag represent the eigenmatrices and
eigenvalues respectively of the discretized wave equations.
Some observations can be made regarding the eigenvalue
problem defined by (31); similar observations apply to
(32). Most importantly, we note that for an inhomogeneous
anisotropic layer, v cannot be factored out of the transforma-
tion. This implies that the matrices U, and [yZ]gjag, which are
layer specific, must be recomputed whenever + changes. We
also point out that if the structure is lossless and we wish to
model purely propagating or purely evanescent modes then
the tri-diagonal matrix to be diagonalized becomes real and
sign-symetric having real eigenvalues and eigenvectors only.

€W or mw
N
5
j+1
I+ y,
. yb
! 5,
/
i1 ’
Y
1
ew or mw

Fig. 2. Multilayer structure having arbitrary top and bottom boundary con-
ditions.

If a layer is homogeneous, then our transformation matrices
U, become identical to the orthonormal matrices 7 ;, found
in [7] which are defined such that the second order finite
difference operators P, are diagonalized T; pPerTen =
[AZ ,]diag Where T}, denotes the transpose of T p.

Diagonalising our wave equations has the desirable effect of
uncoupling the elements of @;f EIM " thus yielding a vectorial
version of the familiar telegraph’s equation

3_2 HTETM
ay2 ¥
For an arbitrary layer j of thickness d = y, — y, as shown in
Fig. 2, the above equation has the well-known solution

#= T, |

o, BT = 0. (33)

- [vs,h}diag

a @TE,TM|
Yy Yo

dy

[cosh(e.nd)]

= [ [Veah]_l[Sinh(rYe.hd)]
[Ye,n][sinh(ye nd)]

[cosh(ve 1 d)]

2]

1
CR?

&

Ue_l([Mmm18[6z2]e[€yy];1P516 - thQ[Mww]e[GZZ]e - h272[6ZZ]e[6yy];1)Ue qjsE + 5P, 0 =0

1o _ _ o?
- 30, 1([€Lw]h[ﬂzz]h[ﬂyy]h 'Psly, — 2w? [tzz]nl€ce]n — hz’)’z[ﬂzz]h[/‘yy]h 1)Uh Q;,IM + 0, =0

qsg‘E,TM[ya
. 2¢TE,TM1 (34)
8y Yy Ya
or written in a more convenient form
_‘?_QTE,TM|
a Y Ya
éngE,TMI
ay Yy Yo
iy ][~[tanh(’ye,hd)]_1 [sinh (e, nd)] 7!
@™ —[sinh(ve 5 d)] 1 [tanh(v.,,d)] 7!
djTE,TM'
: |:¢%E,TM|ya:| (35)
v Yo
82
(31
83 v
(32)
52y

-

3]
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where y; refers to the position just under the top interface
and y, to the position slightly above the bottom interface
such that all quantities are within layer j. The submatrices
[cosh(7e,nd)], [sinh(7e,rd)] and [tanh(ve,»d)] are diagonal.

The field components tangential to the layers, Fy, F,, H,
and H,, are discretized on the system of £ and H lines. The
following transformations, applied to these discretized fields,
are introduced

ég =Tir, 'Eg
éz :Tet’l“;lEz
hx =Tet?"5_1Hz

hy =Tiry  Hy. (36)

Substituting our finite difference operators, the above rela-
tions and the transformations defined by (30) into equations

(11)—(14) yields the following matrix relationship between
the transformed tangential fields, QE EIM and (9/ 6y)¢;r E,TM

- 1 1 -
%Qll ;Qm 0 0 QEM
& 8
2l = 0 0 0 ||=a&"
ex | _ |7y ) %y
b 0 0 0 —Qu||o™
z 1 Jiy %TE
0 0 —Qu  —Quq v
L ’y J A
37

where the submatrices ();; are given in the Appendix for all
lateral wall combinations. ‘

Equation (37) holds for any vertical position within a
layer. We can eliminate @™ and (8/ ay)@, =™ by
combining equation (37), written at positions y, and ys, with
equation (35). After some algebraic manipulations we obtain
the following matrix relationships between the transformed
tangential fields at the top and bottom of j

o | =emest 21
—[tanh(y.d)] ™
-1

+ 7Q12[7e] {—[sinh(’yed)] [Sinh(’kd)]_l :|

[tanh(yed)] ™

1 [hzly,
haly ] _ —franh(yad)] "t [sinh(yad)] "
[ﬁilyb] =Qusln] [—[sinhwffd)]—l [tanh(vidn—l]
_.[e [
a5t |2 | Quasi[fEe | a9

Equations (38) and (39) can be combined into either an
admittance type matrix

ila -111 —CU2:| [éa |

S| = g 40

[hb] 1¥y2 —¥U1[{€p “0)
or alternatively, an impedance type matrix

éa] _[n1 —22|[ha]

[éb} e —Zl] [hb_ @

where we have coalesced the following subvectors

= hz| ] . [éz| ]

h = |;FWer g = [P Y 42)
a,b |:hzlya,b a,b ezlya,b
and submatrices

_ 7Y Y2 _ 7Yz Yua 43
u [ Y21 —Y22 ]’ b2 |{ Ya3 —y24] “3)

—Zz11 212 —Z13 X4
= = . 44
& [ 221 —222]’ “ | %23 —224} )

The elemental matrices y;; and z;; are given in the Appendix.

In order to formulate our indirect eigenvalue problem, we
must derive relationships between h and & at an interface
where the tangential fields will be near their maximum,
which is usually near the centre of the structure, say, the
interface above layer j and below layer j + 1. We obtain
these relationships by working our way from the top and
bottom limits while imposing the continuity condition to the
tansformed tangential fields at layer interfaces. Starting from
the bottom limit and working our way up to the interface at
yp in layer § we obtain, using (40), the following admittance
type relationship [9]

= (1)

with V) defined recursively
YO = yéj)[ygj) _ Y(j—l)]--lyéj) _ ygj) (46)

and where the admittance of the first layer depends on whether
the bottom limit is an electric or magnetic wall

(L
Yy — { —Y; . . bottom ew (47)
W) — )

y, ’ bottom mw

Similarly, working our way down from the top limit, we obtain
the following equations which hold at position y, within layer
Jj+ 1
ROV =y Dty 48)
YOrD = G+ _ Gy (42) 4y HD]=1, G+ (49
7 { y(N )
= N
-
In the same way, using (41), we derive an impedance type
relationship for the bottom part

(4

top ew
top mw

(50)
y [y M1y

yAS) =Z§J)[Z§J) _ Z(j—l)]—lz;\zj) _ Zi]) (52)
A Zgl)[zgl)]'lzél) - z&l) bottom ew (53)
R bottom mw
1
and for the top part
et = 70 0Rg (54)

ZGHD) = R0+ _ 0t 7G+2) 4 D10+ (55

Z(N) — { zil;) _ zéN)[ng)]—lzéN) top ew )
z§ ) top mw

(56
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TABLE I
SUGGESTED FORMULATION FOR THE MODAL MATRICES
T & B Walls | a. | G
ewW-ew YU+ _y® [Y(f“)] -1 [Yf]-l
mw-ew [20+0]7 _yr | zGH) _ [y@)]
mw-mw [Z(J'+1)]‘l - [Z(J)]‘1 Z0+1) _ z(1)
ew-mw YO+ [Z(J)]—-l [Y(Hl)]_l — 0

We now define our indirect eigenvalue problem by applying
the field matching condition one last time at the interface
between layers 7 and j + 1, yielding a modal matrix for the
transformed tangential electric fields

66(7)62) -0 (57)

or alternatively for the transformed tangential magnetic fields

~ ~ ( 7
Gr(v)hy = o. (58)
Either of the above modal functions will generate solutions for
v by making the determinant null

det[G. n(v)] = 0. (59)

We may construct the modal matrices G’E,h by combining
the admittance and impedance matrices (45), (48), (51) and
(54) in many ways that are, theoretically, equivalent. However,
from a numerical standpoint some combinations may prove to
be more efficient and stable. For example, if the bottom limit
is a magnetic wall, then the construction of the impedance
matrix Z1, from (53), requires fewer operations than the con-
struction of the admittance matrix Y (1), from (47); of course
the opposite is true if an electric wall defines the bottom limit.
Furthermore, we note from the Appendix, that the submatrices
comprising z; and y; contain tanh functions, [y. »| matrices,
();; submatrices and constants suggesting that z; and y; may
be numerically stable regardless of layer thicknesses. This is
not true of matrices 25 and y5 as the functions sinh become
problematic for large arguments, therefore, for thick layers.
It is thus preferable to select combinations of the admittance
and impedance matrices in such a way that the first and last
layers are modeled using only z; or y; matrices depending
on the limits. This capability is quite useful when analysing
waveguides that exhibit quarter structure symmetry as bottom
magnetic walls are often used to generate a specific family
of modes. From these arguments, we gather that the modal
functions (';’e, n are best constructed according to the equations
in Table I, given for all possible combinations of top and
bottom walls.

The flexibility gained, by being able to efficiently construct
both modal matrices G, or (i}, is interesting when solving
equation (59) since certain modes may be easier to find with
one matrix compared to the other. This is due to the fact that
the matrices are constructed on the basis of matching tangential
electric or magnetic fields which vary in strength relative to
each other, depending on the desired mode.

HI. NUMERICAL RESULTS AND DISCUSSION

In this section, modal dispersion curves are given for
a series of lossy and lossless anisotropic inhomogeneous
waveguides useful at millimeter-wave or optical frequencies.
Results obtained using the formulation given in the previous
section, are compared with results available from the literature.
We have adopted the modal identification convention found in
[16] for all guides analyzed.

A. Lossy Anisotropic Image Waveguide

The shielded lossy anisotropic image waveguide, shown in
the inset of Fig. 3, was analyzed. The dispersion curves of the
E.' and E2' modes, propagating in this structure are given
as a function of normalized frequency. As can be seen from
the graphs, results reported in [3] for the E,' mode are in
excellent agreement with ours.

The dispersion curves of the E;' mode were generated
by placing a vertical magnetic wall through the centre and
analysing half the structure; the curves for the Ejl mode were
obtained by applying electric wall symmetry. In both cases the
dielectric discontinuity was placed on an F line and equations
(26) and (27) applied. All calculations were performed by an
HP9000 model 715/100 workstation. About two CPU minutes
are required to obtain the root of equation (59) to a relative
accuracy of 10712, Less than two megabytes of memory were
required to model half the structure with 52 ' and H lines.

To thoroughly validate our formulation we analyzed the
structure obtained by taking the dual of the original one, with
the modes of interest now being the H ' and H2* modes. As
expected, the propagation constants we obtained are identical
to those found for the original image guide. All cases were
verified with ;L’yy succesively taking on the values: 1.0, 1.5
and 2.0. The discontinuity in permeability was placed on an
H line and (28) and (29) applied.

B. Anisotropic Dielectric Waveguide

The open dielectric structure shown in the inset of Fig. 4
has been analyzed and the results plotted as a function of
normalized frequency. As can be seen, the dispersion curves
that we have obtained for the first four modes agree quite well
with those given in [3]. We have analyzed a quarter of the
structure using appropriate vertical and horizontal symmetry
walls placed in the centre of the guide to generate the desired
modes. The computation domain was bounded with electric
or magnetic walls which were placed, using a nonequidistant
discretization, far enough from the guide to have no calculable
effects on the results. Specifically, the lateral and top walls
were placed at distances of about 10a and 10b respectively,
where a and b are the dimensions of the guide.

It is well known that the first two modes of an open dielec-
tric waveguide, £} and E', do not have cut-off frequencies
if the structure exhibits both horizontal and vertical symmetry
with respect to its center. At low frequencies, these modes
become particularly sensitive to boundary conditions that are
not placed far enough from the guide, especially if the latter is
weakly guiding such as the structure modeled here. Absorbing
boundary conditions or the ability to place normal boundary
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B/Bo

Fig. 3. Dispersion characteristics of the E;l and Eil modes propagating in a shielded lossy anisotropic image guide. (a) Normalized phase constant.

(b) Normalized attenuation constant. The relative permeabilities of the dielectric are: €z r = €.z = 1.5 — 315 and €y » = €

€yy,r = 10,15 or 20.

conditions far from the guide are essential if we are to obtain
dispersion curves that come down asymptotically toward the
abscissa with decreasing frequency, as shown in Fig. 4.

C. LiNbO3 Optical Waveguide

The LiNbOg3 channel optical waveguide shown in the inset
of Fig. 5 has been analyzed. The dispersion curves of the

!

vy,r — J1.5, where

first four modes were computed by exploiting the vertical
symmetry of the structure about its center. The calculation
domain was bounded by lateral, top and bottom walls placed
at distances of 45 ym, 10 pym, and 24 pm, respectively, from
the guide. A nonequidistant discretization scheme was used.
We have compared our results to those reported in [1]; as
shown in Fig. 5, agreement is good.
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10
Bob

Fig. 4. Normalized dispersion characteristics of the first four modes propagating in a lossless open anisotropic dielectric waveguide. The relative permeabilities
of the guide are: €xzr = €2z = 231, €6yy,r = 2.19, and the background: ¢ . = 2.05.

B/Bo
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Eb
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Bod

Fig. 5. Normalized dispersion characteristics of the first four modes propagating in a LiNbO3 optical waveguide having the féllowing relative permeabulities

— €
- 6:z.r

in the channel: €5, . = (2.22)%.¢5, .

D. Effect of Anisotropy in Dielectric Waveguides

As a final example, we have modeled the structure shown
in the inset of Fig. 6 using various tensors € and 4 in
the guide while maintaining the background permittivity and
permeability constant to values of ¢, = 2.0 and pp . = 1.0
The dispersion curves for the F1! and Ejl modes have been

= (2.3129)* and in the substrate: €2, . = (2.2)%

=€, = (2.29)? In this case. b = 1.0 pm.

8
' Eyy,r

computed for the case study described in Table II and are given
in Fig. 6. We have limited our study to these two modes since
they are the first members of the E7'" and E'™ families and
are polarized mainly along the z and y axes, respectively.
The guide described by case 1 is isotropic and forms the
basis of our comparisons. We note in this case that the E!
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Fig. 6. Normalized dispersion characteristics of the EL' and E;l modes m an open dielectric waveguide as a function of anisotropy; the case study

is described in Table II

TABLE 11
DESCRIPTION OF THE CASE STUDY FOR THE
STRUCTURE SHOWN IN THE INSET OF FIG. 6

Case 1 Case 2 Case 3
€oz,r = 2.6 €zzyr = 2.4 6;%,' =2.8
€ gy = 2.6 €yyr =28 €yyr = 2.4
€2z,r = 2.6 €120 = 2.6 €22 = 2.6
Moz =110 | pogy =115 | pey, =105
Be | pyy,r =110 Hyy,r = 1.05 Hyyr =115
Bezp =110 | pozr =110 | phozr =110

and E;l modes are characterized by dispersion curves that
are very close together; these modes would be degenerate if
the aspect ratio was unitary. Making the horizontal dimension
larger than the vertical favors the E1L mode in the sense that
it makes its propagation constant larger than that of the E;l
mode for a given frequency.

The tensors given as case 2 have been selected to favor
the E1' mode at the expense of the E." mode. As shown by
the dispersion curves, E,' is now characterized by propagation
constants that are much larger than those of E1!. Furthermore,
both curves are located far above and below the curves
belonging to the isotropic guide. In case 3, our tensors have
been reoriented to favor the E2! mode at the expense of the
E}* mode. As expected, the propagation constants of £ are
now much larger than those belonging to E*.

It is interesting to note that the dispersion curve of the
E!' mode in case 3 is slightly above the curve of the E!
mode in case 2. The same behavior is noted when comparing
the El' mode of case 2 with the E;' mode of case 3.
These observations are consistent with the geometrical effects

engendered by a nonunity aspect ratio dielectric guide, as
outlined above.

Based on the results presented in this case study and
supported by those reported in [4], we see that the orientation
of the tensors comprising the dielectric guide has the important
effect of seperating the dispersion curves of the first vertically
and horizontally polarized modes E' and E,' favoring one
at the expense of the other. This implies that in a low aspect
ratio asymmetric guide, where the E1! and E}' modes have
nonzero cut-off frequencies, wideband monomode operation
could be obtained for either polarization, depending on the
orientation of tensors.

IV. CONCLUSICN

A formulation based on the method of lines has been
presented to model a class of waveguide structures constructed
from lossy inhomogeneous anisotropic materials characterized
by complex diagonalized permittivity and permeability tensors.
The validity of our approach has been demonstrated for both
millimeter-wave and optical guides. Alternate modal matrices
have been derived in order to increase the numerical stability,
efficiency and accuracy of the method when using magnetic
walls as top and bottom boundary conditions. The flexibility
gained by introducing these modal matrices also aids in finding
the roots of the determinant equation.

APPENDIX

A. Submatrices Q,;

The submatrices @);; defined by (37) are given below for
an inhomogeneous layer. The top notation is related to ew-ew
or ew-mw lateral boundary conditions while the bottom refers
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to mw-mw or mw-ew conditions

—— Te,.])o DDLU,

Qi = wlh
— Ttezs). 1 D2Un
Q12 =T¢leyylelezz]s " Ue
1
0 e Ty Delez2] P DEUR — W [ty Un
21 =14 Y
—5 TiDEew:]s ' Dalh — wT{jayy]n U
1
0 — TED [psaly ' Do Ue + wT ey, U
34 = et
—3 T!Dalpz2];, 'ptu, + wTfeyyleUe
Qa3 :Tif[ﬂuy] [NZZ]_th
e T D,
Qu = ‘fh

— Tilusely, ' Dy Ue.

The following inversions are obtained analytically:

Yoz = —}Q;;dsinh(fyed)]_l ['Ye}_lQl_lellQ;ll

va = %Qu[sinh(%d)rlhe]-lcz;;

and the submatrices z,,

[vh] ' Qs

12 = Quiltonb(n )] bl Qi Qusi

1 _
z11 = 3Q21[tanh('7’hd)] !

[’Yh]_lQZ;
214 = :;I—Qzl [Slnh(’}/hd)] -t [’Yh] 71@;31 Q44Q3_41

291 = 7yQu1[tanh(vad)] va] T Qs
222 :Jle[’Ye][tanh(%d)]‘lQ?ﬁl
+ 772 Qu[tanh(vad)] " [a] 7! Qg Qua Qs
293 = 7yQu[sinh(yad)] " va] T Qg
294 = JQ12[ve][sinh(v.d)] 1 Q3
+ 772 Qui[sinh(vad)] " yh] T Qs QuaQ3

1 . _
213 = 'J‘Qm[smh(%d)] !

For ahomogeneous ]ayer, the submatrices QL]' are Slmphﬁed where d refers to the thickness of the current layer, where

Q1—21 = U_I[GZZ]E[ny] 'T,
43 _U [NZZ]h[u’yy]h Th.
1
Y pipig, = - st
Q11 = whe. ., whe,.
DIy = I
whe, . Te "7 he.,
Q2 =1
€22
1 2
Q21 = whPe.. DA
Q31 = TR 2]+ weyy I
Qs = Pvy y
1
Y ppr =t
Qus = whiiz: whip.,
tyt t
whit, . TthTe B whﬂzz 5

where the matrix ¢ is as given in [7] and I represents the

identity matrix.

B. Submatrices y,, and z;;

The submatrices y,, are written

y11 = JQas[va][tanh(yad)] Tt Q5]
+ 77 Quatanh(ved)]”
Y12 = 7yQuaaltanh(ved)] " [r.] ' QT
Y13 = JQas[va][sinh(vad)] 7 Q51
+ 77 Qaafsinh(ved)] 1] ' Q15 Qu Qo
Y14 = 77Quu[sinh(ved)] " [ve] ' QL
Yo1 = %Q34[’Uanh(’7ed)]_1[’Ye]_lQﬁlQlle'll

Yoz = %QM [tanh(ved)] " fr.] Q5

el ' Q5 QuiQst

[1]

[2]

[3]

[4]

[5]

[6]

(71

[8]

[9]
[10]

[11]

[12]

[13]

matrices @,; and [v. ] are known.
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