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Modeling Lossy Anisotropic Dielectric

Waveguides with the Method of Lines
Pierre Berini, Member, IEEE, and Ke Wu, Senior Member, IEEE

Abstract— This paper presents a new formulation useful for
modeling waveguides constructed from 10SSY inhomogeneous
anisotropic media. Our approach is based on a pair of
Sturm-Elouville type wave equations that have been derived to

handle inhomogeneous, diagonalized complex permittivity and
permeability tensors. The method of lines is then applied to these
wave equations, and related field equations, creating an indirect
eigenvalue problem that correctly models thh class of structure.

Some refinements to the method of lines are also proposed,
particularly, regarding the construction of the modal matrices
found in the eigenvalue problem. Using our approach, modal

dispersion curves have been computed for millimeter-wave and

optical structures. Comparisons made with results available
from the literature vahdate our approach.

I. INTRODUCTION

D IELECTRIC waveguides are used almost exclusively for

the transmission of electromagnetic energy at optical

frequencies. They are also well suited to waveguiding at

millimeter-wave frequencies since compact low loss structures

can be constructed. Dielectric guides, however, must be accu-

rately modeled if a circuit design is to be functional in the

end. This is particularly true in integrated optics where the

guides are often constructed on complex multilayer structures

and where a precise knowledge of propagation constants is

desirable. Rigorous and efficient numerical techniques are

therefore called upon to provide millimeter-wave and optical

circuit designers with appropriate mathematical or physical

models of such structures.

The most useful numerical techniques will function with

limited computing resources while providing accurate solu-

tions to a wide range of waveguiding problems. Additionally, a

method should be general enough to model important material

properties such as losses, inhomogeneity, and anisotropy.

Some vectorial methods, such as the finite element [1]-[3]

and finite difference [4] methods have been used to analyze

lossy inhomogeneous anisotropic waveguides. We have chosen

to work with the method of lines (MoL) since it is also a

rigorous vectorial technique. Furthermore, it is well known
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for its numerical performance; that is, its accuracy, speed of

computation, and minimal memory requirements.

The application of the MoL to the resolution of wave equa-

tions that generate the mode spectrum of isotropic dielectric

waveguides is well documented. Work described by Diestel

[5], [6], Pregla et al. [7]–[9] are most notable here. Losses

are easily introduced into this formulation as shown in [10]

and [11 ] where metal strips having a finite thickness are

modeled as lossy inhomogeneous dielectrics. Some efforts

to include material anisotropy have been reported where

homogeneous anisotropic substrates were used to support

strip-line waveguides [12], [13]. Some work has also been

done regarding homogeneous gyroelectric and gyromagnetic

materials [7], [14].

In this paper, we are concerned with the application of

the MoL approach to solve the wave and field equations

that govern guiding in structures constructed from lossless or

lossy materials that are both inhomogeneous and rmisotropic.

To our knowledge, present formulations applying the MoL

cannot handle this situation which is of practical importance,

especially in integrated optics. The wave and field equations to

be solved are derived in Section II followed by a description

of the indirect eigenvalue problem obtained by applying the

MoL. Numerical results and a discussion are given in Section

III.

II. FORMULATICJN

In this section, the wave and field equations that must be

solved are derived directly from Maxwell’s equations. The

method of lines is then applied to these equations such that an

appropriate indirect eigenvalue problem is created. Alternative

formulations for the modal matrices are proposed.

A. Wave and Field Equations

Maxwell’s equations are written in the frequency domain

for source-free ~rtisotropic inhomogeneous

VXH=JLL. X.E

VXE=–JWF.H

V.(Z. E)=O

V.(~. H)=O

media

(1)

(2)

(3)

(4)

where F and P are diagonal second rank tensors sharing

common principal axes. We expand these tensors in a cartesian
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coordinate system and write in matrix notation

and

‘=r’‘Yyk.]

(5)

(6)

For inhomogeneous waveguides constructed from linear mate-

rials, the components of the above tensors depend on x and y
only C,i (z, y), p,, (z, y); the direction of wave propagation is

taken along the +Z axis. Both dielectric and ohmic losses are

included since #t, and c,, are taken to be complex quantities

defined as p,, = p:, – IPZ and e,, = e;, – 3(6: + cr,, /w) where

OZZare components of the conductivity tensor.

Maxwell’s curl equations (1) and (2) are coupled first order

differential equations. They become uncoupled by applying the

folIowing sequence of mathematical operations V x ~--1 ~(2)

into (1) and V x ?– 1. (1) into (2). Second order vectorial wave

equations, which are rigorously equivalent to Maxwell’s curl

equations, are then obtained for E and H

We may immediately remove the y dependence in z and v

since in the MOL, the inhomogeneous part of the structure

along y is divided into a number of homogeneous layers

and boundary conditions are applied between them. The two

vectorial wave equations (7) and (8) are then expanded into

six scalar wave equations. In inhomogeneous anisotropic me-

dia, each scalar wave equation couples with at least an

other making their solution difficult. However, if we consider

TE’ (17$E = O) and TMZ (lY~M = O) modes only

and make use of (3) and (4) accordingly, we obtain some

uncoupled scalar wave equations for both these families of

modes. The superposition of the TEZ and TMZ modes will

then completely characterize any mode propagating in the

structure, including hybrid ones.

The TEZ modes are obtained by solving the following wave

equation for the Eu field component:

and similarly, the TM’ modes are obtained by solving the

following wave equation for the HV field component:

where we have defined the complex propagation constant

-y such that i3/8.z = –~ and -y = a + ,7P. The above

wave equations are Sturm–Liouville type differential equations

written in self-adjoint form. They simplify to Helmhotlz

equations when we no longer have an z dependence in Z and B.

The z and z oriented electric and magnetic field components

of the modes propagating in the structure are related to the

TEZ and TMZ modes via the following equations:

‘z=:[:(::HfM)+”2’,yH~’11)

(14)

The Sturm-Liouville wave equations (9) and (10), along

with the above field equations (11 )–( 14), are solved for the

propagation constant T using appropriate boundary conditions

applied at the horizontal and vertical limits.

B. Application of the Method of Lines

A thorough description of the MoL technique along with

some results are given in [7] and references therein. However,

since we are solving a different set of differential equations,

we include for clarity of presentation and completeness, some

intermediate steps and give details in the Appendix.

In the MoL. the differential equations to be solved are

discretized along one dimension only for a two-dimensional

(2-D) problem, The equations are then solved analytically in

the remaining dimension while applying boundary conditions

between consecutive layers. A large number of lines can thus

be used to discretise one dimension while an arbitrary large

number of layers can be used to describe the inhomogeneous

character of the structure along the other dimension. The

required computing resources are modest and the numerical

accuracy of the approach we are using is of order h2; h being

the discretization interval. Furthermore, for a lossless structure,

/3 exhibits a monotonic variation with h thus making possible

numerical extrapolation to higher precision values.

Fig. 1 illustrates an arbitrary waveguide structure com-

posed of a sequence of layers that are homogeneous or
inhomogeneous along x. Also shown are the shifted E and

H line systems where. respectively, the E~E and H~hl

field components are solved. The nonequidistant discretization

scheme is shown for the case of electric wall lateral boundary

conditions.

We approximate the differential operators along x using

nonequidistant finite difference techniques as detailed in [15]

and [7]. The required discretized differential operators are

listed below in matrix form where the top notation refers

to electric-electric or electric-magnetic lateral wall combina-

tions (ew-ew, ew-mw) and the bottom notation refers to the

magnetic-magnetic or magnetic-electric lateral wall (mw-mw,
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Fig. 1. Waveguide structure discretized by two shifted line systems E and H for electric wall lateral boundary conditions.
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(21)

matrix relations:

#E = reE~>T~
tl

(15)
~%E = rk ~E;TE

82 ET~ 82 En,TE

(16) ~v = ‘e 13X2 g

and

(17) ‘
HTM = rhHj,Tl~

V

8 HTM = ~e;H~>TM
ax y

(18) t?2 HTM ~2 ~rn,TM

axz y = ‘h 8X2 y
(22)

where the normalization matrices r~ and rk are written

,e=[E]diagh=[&]diag
(19) and h is taken as the minimal discretization distance.

(23)

Our wave equations, (9) and (10), are discretized within

each layer of our composite structure by introducing the

second-order finite difference operators defined above

H;’TM. (20) (
‘$[P~~le[’~zle[’9yli1psze

Matrix D is as given in [7]; although the same notation is /
n’1

used, it must be noted that the first-order finite difference + ~E;’TE = O (24)
operator Dz is different for all combinations of lateral walls. Y

We have included the second order operators l’+ as they

(
–+[6==lh[Mzzlh[My,l;lP’lhare useful for treating homogeneous layers, usually present

in composite structures. The normalized fields E~’TE and

lI~tTM are defined such that the second-order finite difference
)

+ ~2[pzz]h[%z]h + ‘Y2[kz]h[flyy];1 H; ’TM

operators Pe,k and Psze,h are real symmetric matrices when a

nonequidistant discretization scheme is used. The normalized + ~H~’TM = O. (25)

quantities relate to the discretized fields via the following Y
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The diagonal matrices [eZZ]h, [ILYY]h and [pz.]~ are created

from the functions cZZ(z), Wgg(z) and LZZ ($) sampled on the

H lines while [PZ%],, [cYY]e and [cZZ]. are formed from the

functions Lz. (z), evy (z) and CZZ(x) sampled on the E lines.

Discontinuities in permittivity are rigorously accounted for

if they are placed on an E line, where the tangential electric

fields EV,Z are continuous. The values of eYY and e.. on this

line are found to be

(26)

(27)

Similarly we place discontinuities in permeability on an H

line, where the tangential magnetic fields Hg,z are continuous.
The values of Kgy and uZ, on this line are

pzz,3d3 + pzz,4d4
p.. =

d3 + d4

(28)

(29)

where the distances d,, defined in Fig. 1, me required if the

discretization is nonequidistant in the region of the discontinu-

ities. The permittivities and permeabilities having subscripts

z refer to the value of these quantities on either side of a

discontinuity.

We now introduce the following transformations

where U, and uh are nonsingular matrices. These transforma-

tions are substituted into our discretized wave equations which

are then multiplied by Ue–1 and U; 1, respectively, as shown

in (31) and (32) at the bottom of the page. The matrices Ue and

uh are selected such that the wave equations are diagonalized.

This is achieved by eigenvalue decomposition where the

matriCeS Ue,h and [T:,h] dig represent the eigenmatrices and
eigenvalues respectively of the discretized wave equations.

Some observations can be made regarding the eigenvalue

problem defined by (31); similar observations apply to

(32). Most importantly, we note that for an inhomogeneous

anisotropic layer, T cannot be factored out of the transforma-

tion. This implies that the matrices Ue and [y:] diag, which are

layer specific, must be recomputed whenever ~ changes. We

also point out that if the structure is lossless and we wish to

model purely propagating or purely evanescent modes then

the tri-diagonal matrix to be diagonalized becomes real and

sign-symetric having real eigenvalues and eigenvectors only.

ew or mw

N

‘b
j+l

Y,
Yb

j
Y,
Yb

j-1 .,

1

ew or mw

Fig. 2. Multilayer stracture having arbitrary top and bottom boundmy con-
dmons.

If a layer is homogeneous, then our transformation matrices

U.,h become identical to the orthonormal matrices T,,k found

in [7] which are defined such that the second order finite

difference operators P.,h are diagonalized T~,h pe,hTe,h =

[~~ h]diag where T; h denotes the transpose of ~.,k.

Diagonalising OU; wave equations has the desirable effect of

‘E’TM, thus yielding a vectorialuncoupling the elements of @v

version of the familiar telegraph’s equation

~@TE,TM

@2 Y - [%,h]d&g@~E’Thf =0. (33)

For an wbitrary layer j of thickness d = y~ – y. as shown in

Fig. 2, the above equation has the well-known solution

@;E’TMIYb

[ag y 1~@TE,TMlyb

[

[cosh(~.,kd)] [’Y~,k]-’[sinh(v,,kd)]

- [v~,~][sinh(v~,hd)] [COSh(~c,hd)] 1

Q$E’TNIIY.

‘[ 1
“ ~@TE,TM ,Y (34)

(?y~”

or written in a more convenient form

[

-[tanh(~e,hd)]-’ [sinh(~.,hd)]-l

= [~’hl -[sinh(~,,kd)]-l [tanh(~,,~ci)]-l1

“ E%]
(35)

[7:1
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where yb refers to the position just under the top interface

and Ya to the position slightly above the bottom interface

such that all quantities are within layer j. The submatrices

[cosh(T.,hd)], [sinh(~.,hd)] and [tanh(~.,hd)] are diagonal.

The field components tangential to the layers, Ez, E,, Hz
and Hz, are discretized on the system of E and H lines. The

following transformations, applied to these discretized fields,

are introduced

gx = T; T;lEX
t ‘lEZiiz = Tere

h% = T:r;lHz

hz = T:r~lHz. (36)

Substituting our finite difference operators, the above rela-

tions and the transformations defined by (30) into equations

(1 1)—(14) yields the following matrix relationship between

the transformed tangential fields, @~E’TM and (~/t3y)@~E’TM

;Q21 O

0 0

0 0

where the submatrices Qij

o 0

0 ;Q34

:Q43 :Q44

(37)

are given in the Appendix for all

lateral wall combinations.

Equation (37) holds for any vertical position within a

layer. We can eliminate @~’TM and (~/tly)@~E’TM by

combining equation (37), written at positions Y. and yh, with

equation (35). After some algebraic manipulations we obtain

the following matrix relationships between the transformed

tangential fields at the top and bottom of j

[1
~zIy.

[1
–1&zlya

=7 Q11Q21 gzlg,
~zlgb

[

-[tanh(~ed)]-’ [sinh(~.d)]-l

+ ‘Q12[7’] -[sinh(T.d)]-’ [tanh(~ed)]-l 1

[1
.Q;: ~dYa

hxlvb
(38)

R]= [
-[tanh(~hd)]-’ [sinh(~hd)]-’

3Q43[v~]_ [sinh(7h~)]-1 [tanh(-y~d)]-l 1

[1
.Q;: :[:

[1
–1kclya

+ 7Q44Q34 ~$lyb . (39)

Equations (38) and (39) can be combined into either an

admittance type matrix

(40)

or alternatively, an impedance type matrix

kl=k akl
(41)

where we have coalesced the following subvectors

and submatrices

The elemental matrices y~j and .zij are given in the Appendix.

In order to formulate our indirect eigenvalue problem, we

must derive relationships between L and Z at an interface

where the tangential fields will be near their maximum,

which is usually near the centre of the structure, say, the

interface above layer j and below layer j + 1. We obtain

these relationships by working our way from the top and

bottom limits while imposing the continuity condition to the

transformed tangential fields at layer interfaces. Starting from

the bottom limit and working our way up to the interface at

yb in layer ‘j we obtain, using (40), the following admittance

type relationship [9]

with Y(j) defined recursively

(45)

y(~) == y:) [yp – Yq”-lyy – yf) (46)

and where the admittance of the first layer depends on whether

the bottom limit is an electric or magnetic wall

{

_yfl)
y(1) = bottom ew

(1) (1) -1 (1) ‘1) bottom mw
(47)

Y, [Yl 1 Y2 – Y1

Similarly, working our way down from the top limit, we obtain

the following equations which hold at position y. within layer

j+l.

fi(~+l) = y(j+l)~:+l) (48)

y:+l) = Yf+l) _ Yy+l) [y(j+z) + Yy+l)]-ly:+u (49)

Y(N) =

{

top ew
(50)

$- yJN)[y\N)]-ly\N) top mw

In the same way, using (41), we derive an impedance type

relationship for the bottom part

-(i) = Z(j)fi:)
‘b

(51)

.2@ = # [Zf) – .z(~-l)]-lzg) – # (52)

{

(1) (1) -lz\l) _ #) bottom ew
2(1) = z’ [’q ]

_z\l)
bottom mw

(53)

and for the top part

~g+l) = z(~+l)~:+l) (54)

Z(j+l) = 2:+1) _ ~.i+l) [Z(j+? + ~y+l)]–lz$+l) (55)

{

~\N) _ ~~N) ~zfN)l _l,z\N) top ew
z(N) =

~$N) (56)
top mw”
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TABLE I

SUGGESTEDFORMULATIONFOR THE MODAL MATRICES

T & B Walls ee ~h

ew-ew y(~+l) – y(,) [y(~+l)l-’ _ (yjl-’

mw-ew [2(1+1)] -1- y, z(~+l) – [y(~)] -’

mw-mw [.z(~+l)] -’- [Z(3)1 -’ z(~+l) – Z())

ew-mw y(~+l) – [2(1)] -1 [y(~+l)] -’- Z(J)

We now define our indirect eigenvalue problem by applying

the field matching condition one last time at the interface

between layers j and j + 1, yielding a modal matrix for the

transformed tangential electric fields

Ge(~)e:)= o (57)

or alternatively for the transformed tangential magnetic fields

(58)

Either of the above modal functions will generate solutions for

-y by making the determinant null

det[G.,k(y)] = O. (59)

We may construct the modal matrices G.,k by combining

the admittance and impedance matrices (45), (48), (51 ) and

(54) in many ways that are, theoretically, equivalent. However,

from a numerical standpoint some combinations may prove to

be more efficient and stable. For example. if the bottom limit

is a magnetic wall, then the construction of the impedance

matrix 2(1), from (53 ), requires fewer operations than the con-

struction of the admittance matrix Y (1), from (47); of course

the opposite is true if an electric wall defines the bottom limit.

Furthermore, we note from the Appendix, that the submatrices

comprising 21 and yl contain t anh functions, [Te,h] matrices,

Qij submatrices and constants suggesting that ZI and VI may

be numerically stable regardless of layer thicknesses. This is

not true of matxices X2 and g2 as the functions sinh become

problematic for large arguments, therefore, for thick layers.

It is thus preferable to select combinations of the admittance

and impedance matrices in such a way that the first and last

layers are modeled using only ZI or yl matrices depending

on the limits. This capability is quite useful when analysing

waveguides that exhibit quarter structure symmetry as bottom

magnetic walls are often used to generate a specific family

of modes. From these arguments, we gather that the modal

functions ~,,k are best constructed according to the equations

in Table I, given for all possible combinations of top and

bottom walls.

The flexibility gained, by being able to efficiently construct

both modal matrices G. or Gk, is interesting when solving

equation (59) since certain modes may be easier to find with

one matrix compared to the other. This is due to the fact that

the matrices are constructed on the basis of matching tangential

electric or magnetic fields which vary in strength relative to

each other, depending on the desired mode.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, modal dispersion curves are given for

a series of lossy and lossless anisotropic inhomogeneous

waveguides useful at millimeter-wave or optical frequencies.

Results obtained using the formulation given in the previous

section, are compared with results available from the literature.

We have adopted the modal identification convention found in

[16] for all guides analyzed.

A. Lossy Anisotropic Image Waveguide

The shielded lossy anisotropic image waveguide, shown in

the inset of Fig. 3, was analyzed, The dispersion curves of the

E~l and E~l modes, propagating in this structure are given

as a function of normalized frequency. As can be seen from

the graphs, results reported in [3] for the E~l mode are in

excellent agreement with ours.

The dispersion curves of the E~l mode were generated

by placing a vertical magnetic wall through the centre and

analysing half the structure; the curves for the E; 1 mode were

obtained by applying electric wall symmetry. In both cases the

dielectric discontinuity was placed on an E line and equations

(26) and (27) applied. All calculations were performed by an

HP9000 model 715/100 workstation. About two CPU minutes

are required to obtain the root of equation (59) to a relative

accuracy of 10–12. Less than two megabytes of memory were

required to model half the structure with 52 E and H lines.

To thoroughly validate our formulation we analyzed the

structure obtained by taking the dual of the original one, with

the modes of interest now being the H; 1 and H~l modes. As

expected, the propagation constants we obtained are identical

to those found for the original image guide, All cases were

verified with p~Y successively taking on the values: 1.0, 1,5

and 2.0. The discontinuity in permeability was placed on an

H line and (28) and (29) applied.

B. Anisotropic Dielectric Waveguide

The open dielectric structure shown in the inset of Fig. 4

has been analyzed and the results plotted as a function of

normalized frequency. As can be seen, the dispersion curves

that we have obtained for the first four modes agree quite well

with those given in [3], We have analyzed a quarter of the

structure using appropriate vertical and horizontal symmetry

walls placed in the centre of the guide to generate the desired

modes. The computation domain was bounded with electric

or magnetic walls which were placed, using a nonequidistant
discretization, far enough from the guide to have no calculable

effects on the results. Specifically, the lateral and top walls

were placed at distances of about 10a and 10b respectively,

where a and b are the dimensions of the guide.

It is well known that the first two modes of an open dielec-

tric waveguide, E~l and E: 1, do not have cut-off frequencies

if the structure exhibits both horizontal and vertical symmetry

with respect to its center. At low frequencies, these modes

become particularly sensitive to boundary conditions that are

not placed far enough from the guide, especially if the latter is

weakly guiding such as the structure modeled here. Absorbing

boundary conditions or the ability to place normal boundary
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Fig. 3. Dispersion chmacteristics of the E; 1 and E: 1 modes propagating in a shielded 10SSY anisotropic image guide. (a) Normalized phase constant.

(b) Normalized attenuation constant. The relative permeabilities of the dielectric are: .Eza,r = .Z,,, = 1.5- J1.5 and e?)g,~ = e~v,r -.71.5, where

.;,,T = 1.0, 1.5 or 2.0.

conditions far from the guide are essential if we are to obtain first four modes were computed by exploiting the vertical

dispersion curves that come down asymptotically toward the symmetry of the structure about its center. The calculation

abscissa with decreasing frequency, as shown in Fig. 4. domain was bounded by lateral, top and bottom walls placed

at distances of 45 ~m, 10 pm, and 24 #m, respectively, from
C. LiNb03 Optical Waveguide the guide. A nonequidistant discretiz;ation scheme was used.

The LiNb03 channel optical waveguide shown in the inset We have compared our results to those reported in [1]; as

of Fig. 5 has been analyzed. The dispersion curves of the shown in Fig. 5, agreement is good.
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Fig. 4. Normalized dispersion chwacte~stlcs of the first fourmodes propagating inalossless open anisotiopic dielectric waveguide. Therelative permeabilities

of the guide are: e~~,, = e,~,, = ‘2.31, euv,, = 2.19, and the background: Cb,, = 2.05.
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Fig. 5. Nomalized dispersion chmacteristics of the first four modes propagating ina LiNbOs optical waveguide having the following relative pemeabllities
in the channel: c~,C,r = (2.22)2, C;y,r = ,:z,r =(2.3129)2 andin the substrate: c~z,r =(2.2) z,c~v,, =c~z, r =(2.29)2 Inthiscase. b= l.Opm.

D. Effect of Anisotropy in Dielectric Wave,guides computed for the case study described in Table II and are given

As a final example, we have modeled the structure shown in Fig, 6. We have limited our study to these two modes since

in the inset of Fig. 6 using various tensors z and D in they are the first members of the 11~’ and ET” families and

the guide while maintaining the background petmittivity and are polarized mainly along the z and y axes, respectively.

permeability constant to values of e~,, = 2.0 and ,u~,, = 1.0. The guide described by case 1 is isotropic and forms the

The dispersion curves for the E~l and E~l modes have been basis of our comparisons. We note in this case that the E~l
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Fig. 6. Normalized dispersion characteristics of the E~l and E; 1 modes m an open dielectric waveguide as a function of anisotropy; the case study
is ‘described in Table ~1.

.

TABLE 11

DESCRIPTIONOF THE CASE STUDY FORTHE

STRUCTURESHOWN m THE INSET OF FIG. 6

Case 1

Es=,, = 2.6

CVg,.= 2.6

czz,r = 2.6

Ax,r = 1.10

pyy, r = 1.10

fizz .!’ = 1.10

Caae 2

+ =2.4

CYY,T= 2.8

E,.,, = 2.6

I&,, = 1.15

P,,,r = 105

/Lzz,r = 1.10

Case 3

cxz,,= 2.8

Cyy,r = 2.4

czz,r = 2.6

Pm,r = 1.05

PyY,r= 1.15

Pzz,r = 1.10

and E~l modes are characterized by dispersion curves that

are ve~y close togetheL these modes would be degenerate if

the aspect ratio was unitary. Making the horizontal dimension

larger than the vertical favors the ~~1 mode in the sense that

it makes its propagation constant larger than that of the E~l

mode for a given frequency.

The tensors given as case 2 have been selected to favor

the E; 1 mode at the expense of the E~l mode. As shown by

the dispersion curves, E~l is now characterized by propagation

constants that are much larger than those of 12$1. Furthermore,

both curves are located far above and below the curves

belonging to the isotropic guide. In case 3, our tensors have

been reoriented to favor the 13~1 mode at the expense of the

E~l mode. As expected, the propagation constants of E~l are

now much larger than those belonging to 13~1.

It is interesting to note that the dispersion curve of the

E~l mode in case 3 is slightly above the curve of the Ejl

mode in case 2. The same behavior is noted when comparing

the E~l mode of case 2 with the E~l mode of case 3.

These observations are consistent with the geometrical effects

engendered by a nonunity aspect ratio dielectric guide, as

outlined above.

Based on the results presented in this case study and

supported by those reported in [4], we see that the orientation

of the tensors comprising the dielectric guide has the important

effect of separating the dispersion curves of the first vertically

and horizontally polarized modes E:” and E; 1 favoring one

at the expense of the other. This implies that in a low aspect

ratio asymmetric guide, where the E: 1 and E; 1 modes have

nonzero cut-off frequencies, wideband monomode operation

could be obtained for either polarization, depending on the

orientation of tensors.

IV. CONCLUSICIN

A formulation based on the metlhod of lines has been

presented to model a class of waveguide structures constructed

from lossy inhomogeneous anisotropic materials characterized

by complex diagonalized permittivity :Lnd permeability tensors.

The vrdidity of our approach has been demonstrated for both

millimeter-wave and optical guides. Alternate modal matrices

have been derived in order to increase the numerical stability,

efficiency and accuracy of the method when using magnetic

walls as top and bottom boundary conditions. The flexibility

gained by introducing these modal matrices also aids in finding

the roots of the determinant equation.

APPENDIX

A. Submatrices Q,j

The submatrices Q~j defined by (37) are given below for

an inhomogeneous layer. The top notation is related to ew-ew

or ew-mw lateral boundary conditions while the bottom refers
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to mw-mw or mw-ew conditions

Q12 =T&/l.[czzl;lu.

E
1

T; Dz[ezz]; lD:uh – wTj[Kyv]huh
Q21 = W~2

T; D;[ezz];1Dzi7h – wl’; [&y]huh
wh’

{-

1
T; D:[LLzz]~lDJJe + WT$[evu]e Ue

Q34 = - Wf2

T: DZIMJID:U. + WT; [~vY]e Ue
wh’

Q43 ‘T; [k/t/] h[kz];lUh

{

1
—— T~[pzz]~lDzUe

QM =
~h

~ Ti[LLJ~lD:U..

The following inversions are obtained analytically:

Q;; = Z-l[’ZZ]e[~W];lTe

h [fl~~]~[kw]i?Th.
Q;; z u-~

For a homogeneous layer, the submatrices Q,j are simplified

{

1
T~D~Th = –—

Qll = ‘~hy., w:... “
1

~ TjDZTh = — 6
.Z whezz

Q12 = ~~

Q21 = & [%1– WWWJ

Q,, = - & [A:]+ w&yJ
~z

Q43 = EI

{

1 1
T:DZT. = –— 6

Q44 =
—whpzz whpzz

1
T;D:T. = ~ &

whpzz whpzz

where the matrix 6 is as given in [7] and 1 represents the

identity matrix.

B. Submutrices y,]

The submatrices

and Zij

7J,3 are written

and the submatrices .zZ1

?212 = –Qz1 [tanh(Vhd)]–l [’Y~]-1Q131Q44Q~1

J

z13 = ~Q21 [sinh(md)]-l [~h]–lQi~

where d refers to the thickness of the current layer, where

matrices Qtj and [T.,h] are known.
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